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Abstract 

Neurobiological models explain increased risk-taking behaviours in adolescence and young adulthood as 
arising from staggered development of subcortical reward networks and prefrontal control networks. In 
this study, we examine whether individual variability in impulsivity and reward-related mechanisms is 
associated with higher level of engagement in risky behaviours and vulnerability to maladaptive outcomes, 
and whether this relationship is mediated by cognitive control ability. A community sample of adolescents, 
young adults, and adults (age = 15-35yrs) completed self-report measures and behavioural tasks of 
cognitive control, impulsivity, and reward-related mechanisms, and self-reported level of maladaptive 
outcomes. Behavioural, event-related potential (ERP), and multivariate pattern analysis (MVPA) measures 
of proactive control were derived from a task-switching paradigm. Adolescents, but not young adults, 
reported higher levels of impulsivity, reward-seeking behaviours and maladaptive outcomes than adults. 
They also had lower cognitive control ability, as measured by both self-report and task-based measures. 
Consistent with models of risk-taking behaviour, self-reported level of cognitive control mediated the 
relationship between self-reported levels of impulsivity and psychological distress, but the effect was not 
moderated by age. In contrast, there was no mediation effect of behavioural or EEG-based measures of 
cognitive control. These findings suggest that individual variability in cognitive control is more crucial to the 
relationship between risk-taking/impulsivity and outcomes than age itself. They also highlight large 
differences in measurement between self-report and task-based measures of cognitive control and 
decision-making under reward conditions, which should be considered in any studies of cognitive control. 

 

 
  



   
 

Risk-taking during late adolescence and young adulthood forms an integral and adaptive part of the 
psychological and physical transitions towards adult patterns of behaviour. Although not all risk-taking is 
maladaptive (Gullo & Dawe, 2008; Romer et al., 2017), high risk behaviours can have adverse long-term 
consequences (Reyna & Farley, 2006; Steinberg, 2009) by supporting lifelong patterns of maladaptive 
behaviours (e.g., addiction, criminality; Moffitt et al., 2011) both in healthy young people and even more so 
in people with neurodevelopmental disorders (Catts et al., 2013; Steinberg, 2009). Recent models of risk-
taking in young people (e.g., Casey, 2015; Steinberg, 2007) posit that heightened risk-taking behaviour and 
associated maladaptive outcomes during adolescence and young adulthood arise from differences in the 
rate of maturation of brain networks. Frontal cognitive control networks that are involved in guiding goal-
directed behaviour do not mature until well into adulthood, whereas cortico-subcortical networks that 
support reward-related mechanisms mature during adolescence. This is thought to result in heightened 
sensitivity to the potential rewards that may be associated with engaging in risky behaviours which, in 
combination with less efficient control networks, results in poor decision-making, especially under high 
incentive conditions (see Shulman et al., 2016). 

Consistent with these models, core cognitive control processes (i.e., working memory, set-shifting, common 
executive function (EF); Miyake & Friedman, 2012) continue to develop throughout adolescence and into 
young adulthood (e.g., Karayanidis, Jamadar & Sanday, 2013; Luna, Garver, Urban, Lazar & Sweeney, 2004; 
Ridderinkhof, Band & Logan, 1999). These processes rely on broadly-distributed frontal networks (Gratton, 
Sun & Peterson, 2018) that also show protracted development in both structure (e.g., Paus, 2005; Gogtay 
et al., 2004) and connectivity with cortical and subcortical regions (Hwang, Velanova & Luna, 2010; Stevens, 
Kiehl, Pearlson & Calhoun, 2007). Functional differences have also been shown. For instance, compared to 
adults, adolescents show less engagement of frontoparietal control networks during risky decision making 
(e.g., Eshel, Nelson, Blair, Pine & Ernst, 2007; Fecteau et al., 2007), and greater activation of reward-related 
networks when processing appetitive cues (e.g., Sommerville, Hare & Casey, 2011, van Leijenhorst et al., 
2009).  

There is also substantial evidence linking cognitive control and risk-taking (e.g. Peeters, Oldehinkel & 
Vollebergh, 2017; Magar, Phillips & Hosie, 2008), impulsivity (Stahl et al., 2014), and maladaptive outcomes 
in later life (Moffitt et al., 2011). Likewise, high reward seeking and impulsivity, measured both 
behaviourally and through self-report, are associated with greater engagement in maladaptive and risk-
taking behaviours (e.g. Castellanos-Ryan et al., 2013; Derefinko et al., 2014; Donohew et al., 2000; Mackillip 
et al., 2016 Stahl et al., 2014). However, the relationship between the developmental trajectories of brain 
networks associated with reward mechanisms and cognitive control is complex, showing dynamic 
interactions extending well beyond adolescence (Pfeifer & Allen, 2012; Romer, Reyna & Satterwaite, 2017). 
For instance, level of cognitive control (van Leijenhorst et al., 2010) and sensitivity to feedback (Koolschijn, 
Schel, de Rooij, Rombouts & Crone, 2011) were found to be stronger predictors of brain maturation than 
age alone, consistent with substantial individual variability in the rate of development of these processes 
(Romer, Reyna & Satterwaite, 2017).  

Moreover, there are still large gaps in our understanding of how cognitive control and reward mechanisms 
relate to intra- and inter-individual variability in impulsivity and risk-taking behaviours. For instance, within 
dual systems models, impulsivity is sometimes encompassed under psychosocial maturity, a composite 
construct that also includes risk perception, sensation seeking (e.g., Steinberg, 2008), and other times used 
as a proxy for response inhibition, a core cognitive control process (e.g., Steinberg, 2010). These distinct 
definitions are consistent with Dawe’s conceptualisation of impulsivity as a multi-faceted construct that 
includes two key domains: one relating to reward sensitivity or drive and the other to disinhibition (Dawe & 
Loxton, 2004; Gullo & Dawe, 2008). Few studies have concurrently examined individual variability in the 
relationship between cognitive control, impulsivity, reward-related mechanisms and outcome behaviours 
in adolescence and young adulthood (Bjork & Pardini, 2015; Casey et al., 2011; Laurens et al., 2007; Pfeifer 
& Allen, 2012; Steinberg, 2007; Shulman et al., 2016).  

In this study, we use mediation analyses to test the implicit assumption of risk-taking models of 
adolescence and young adulthood that cognitive control ability mediates the effect of impulsivity and 
reward-seeking on level of engagement in risky behaviours and maladaptive outcomes (e.g., Casey et al., 
2010; Steinberg, 2009). We hypothesise that higher levels of impulsivity and reward-seeking will be 



   
 

associated with greater engagement in risky behaviours and maladaptive outcomes, and that this 
relationship will be mediated by level of cognitive control. Adolescents are expected to exhibit higher 
impulsivity and reward-seeking, as well as lower cognitive control than adults. As variability in cognitive 
control is expected to be greater in adolescence, we hypothesise that the mediating effect of cognitive 
control on the relationship between impulsivity/reward-seeking and outcome behaviours will be greater in 
this group. 

Reward-related mechanisms cover a broad range of constructs that are defined and operationalised 
differently across the literature (e.g. Harden et al., 2017; Duell et al., 2016; Nigg, 2017). For example, risk-
taking is impulsive when the behaviour is engaged without thought of consequence, yet also can be quite 
planned and thought-out (e.g., Nigg, 2017). The association between impulsivity, reward mechanisms, 
cognitive control ability and maladaptive outcomes has been shown to be weak and to vary with the level 
of measurement (Skippen et al., 2019; for review see Stahl et al., 2014) as well as different researchers’ 
definition of such terms (Nigg, 2017; Romer et al., 2017). We included both self-report and behavioural 
measures of impulsivity and reward-seeking to capture both levels of measurement and identify 
independent patterns. Furthermore, in order to target real-world behaviours, outcome measures focussed 
on self-reported level of engagement in risky behaviours, quality of life and psychological well-being.  

Most imaging studies of risk-taking behaviour have used magnetic resonance imaging (MRI) measures to 
identify variability across brain regions and networks involved in cognitive control and reward processes. 
However, electroencephalography (EEG) methods can better capture the temporal variability of complex, 
dynamic processes associated with cognitive control processes (Gratton, Cooper, Fabiani, Carter & 
Karayanidis, 2018), and may be more sensitive to capturing developmental changes in cognition across the 
lifespan (e.g., for review see Segalowitz, Santesso, & Jetha, 2010; Uhlhaas, Roux, Rodriguez, Rotarska-
Jagiela, & Singer, 2010).  

Like the constructs of impulsivity and reward seeking, cognitive control also can be defined a number of 
different ways (e.g., Harden et al., 2017). In this study, we describe cognitive control as the higher order 
executive functions, planning, working memory, task-set updating (e.g., Miyake & Friedman, 2012).  We 
obtained measurements of cognitive control at different levels (EEG, behaviour, self-report) to determine 
whether cognitive control processes differ in their mediation of the relationship between reward-seeking 
and maladaptive outcomes. We used the cued-trials task-switching paradigm (Karayanidis et al., 2010; see 
Jamadar, Thienel & Karayanidis, 2015 for task-switching paradigms and associated cognitive processes) that 
produces behavioural and event-related potential (ERP) measures sensitive to proactive cognitive control 
processes (Braver, 2012). These processes are involved in anticipating and preparing for a change in 
contextual demands so as to optimise performance, and have been shown to mature more slowly in 
childhood and adolescence (Karayanidis et al., 2013; for review see Munakata et al., 2012). We sought to 
optimise the opportunity to identify specific proactive control processes that impact risk-taking behaviour 
and quality of life by deriving multiple sensitive measures of proactive control. Behavioural switch cost and 
mixing cost measures target set-shifting ability and working memory load, respectively – two core cognitive 
control processes (Miyake and Friedman, 2012) that have been found to engage frontoparietal (Cooper et 
al., 2016; Mansfield et al., 2012) and frontostriatal (Mansfield et al., 2011) control networks. We extracted 
measures of ERP components during the cue-target interval (CTI) to examine individual variability in the 
engagement of proactive control processes involved in preparing to shift between tasks-sets. In addition, 
we implemented multivariate pattern analysis (MVPA) of the EEG data (Bode et al., 2018) to characterise 
individual variability in the timing and accuracy of working memory and set-shifting processes involved in 
mixing cost and switch cost, respectively. We argue that the accuracy of discrimination of EEG epochs from 
trials that differ in set-shifting demands (or working memory demands) is indicative of processing 
efficiency, and that greater discrimination is suggestive of more efficient implementation of cognitive 
control. 

   

METHODS 

Participants 



   
 

A community sample was recruited from schools, businesses, community organisations, and tertiary 
education centres in the Central Coast and Hunter regions of New South Wales, Australia. Participants who 
reported having received a clinical diagnosis of psychological or neurological conditions were excluded. Of 
the 238 participants who were included in the Age-ility project (Karayanidis et al. 2016; Cooper et al., 
2015), 215 participants completed the EEG session (Figure 1). Twenty-two percent were removed because 
of task-switching data problems (n=4) or missing data (n = 43), leaving a final sample of 168 participants 
(20.91 ± 4.75 yrs, range 15-35 yrs, 91% right handed). Men and women (56.5%) did not differ in age (21.5 ± 
5.0 yrs, 20.2 ± 4.4 yrs, respectively F(1,166) = 3.346, p = .069). This sample did not differ from the 70 
participants who had no EEG or incomplete data on any common variables, including age, sex, and 
neuropsychological measures (all p>.162).  

The protocol was approved by the University of Newcastle Human Research Ethics Committee (HREC: H-
2012-0157). Participants (and their parents/guardians, if aged under 18 yrs) gave written informed consent 
and were reimbursed $20/hr. 

We examined scatterplots of age against other variables (see below) and fitted a Loess curve (see online 
supplementary materials; https://osf.io/hs9me/) which indicated that the effect of age was not strongly 
linear, consistent with literature suggesting continuing development of cognitive mechanisms from 
adolescence into young adulthood reaching a plateau thereafter. Consequently, we defined three age 
groups: Adolescent (15-18 yrs, n=62, 33 female, 16.8 ± 1.2 yrs), Young Adult (19-24 yrs, n=74, 39 female, 
20.9 ± 1.6 yrs), and Adult (25-35 yrs, n=32, 23 female, 28.9 ± .3.7). Sex did not differ across groups (p >.15).  

We analysed all variables using a 3 Age Group (Adolescent, Young Adult, Adult) × 2 Sex ANOVA, with 
repeated measures factors specified where appropriate (see in each section of results). Significant Age 
Group effects were followed by simple contrasts comparing Adolescents vs. Young Adults, Adolescents vs. 
Adults, and Young Adults vs. Adults with Greenhouse-Geisser corrections for the assumption of sphericity 
violations. We report significant results with exact p values except where <.0001, and include full list of 
non-significant results at https://osf.io/hs9me/. 

Procedure 

Participants completed three testing sessions (Karayanidis et al. 2016). The first session included a 
neuropsychological battery focussing on cognitive control and decision-making, as well as practice on the 
task-switching paradigm. Participants were given a series of questionnaires including measures of cognitive 
control, impulsivity, reward-seeking, risk behaviours and psychological well-being to complete in the lab or 
at home to be returned for the second session. The second session occurred two weeks later and included 
further task practice and performance of the task-switching paradigm while EEG was recorded. The third 
session included an MRI scan, the results of which are not reported here (Karayanidis et al. 2016).  

Table 1 lists all tasks and questionnaires and the measures analysed from each. Predictor variables included 
measures that characterise the individual in terms of constructs such as impulsivity, sensation seeking, risk 
appraisal, and risky decision-making. Outcome variables included self-report measures of engagement in 
risky behaviours, psychological distress, and quality of life. Cognitive control variables were derived from 
well-established tasks of reasoning, problem solving, and working memory, the cued-trials task-switching 
paradigm (Karayanidis et al., 2016), as well as the self-report version of the Behavioural Rating Inventory of 
Executive Function (BRIEF).  

Missing data. Five participants had minimal missing data and we used the following approaches to avoid 
excluding the entire case. Two participants had more than two items missing on the SSS and the Barratt 
Impulsivity Scale-11 (BIS-11), respectively. We used regression imputation to estimate missing values 
(Saunders et al., 2006). For each participant, we ran regression across all participants on variables related 
to the scale with missing data. The resulting linear equation (𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏) was solved for the missing data 
point (y). Missing data for each participant was imputed by averaging all estimates (y values).  

Another participant’s missing K10 total score was substituted with the mean of the entire sample. On the 
Sensation Seeking Scale (SSS), one participant had one missing response, and another had two missing 
responses. These missing values were replaced with the individual’s mean score on the corresponding 
subscale, and the total scores was computed using the replaced values.  

https://osf.io/hs9me/
https://osf.io/hs9me/


   
 

Variable Reduction 

As many of the variables derived from self-report and behavioural measures tap into partially overlapping 
constructs, we used principal components analysis (PCA) to derive separate PCA models for variables 
characterised as predictors (n = 17), outcomes (n = 20), and cognitive control measures (n = 10) from the 
neuropsychological tasks (see Table 1)1. 

PCA relies on the variable correlation matrix to identify components that maximise the total variance within 
these measures. We assessed all measures for outliers or other biases that may affect the linearity of 
correlations, but did not need to remove any variables due to outlying values. To correct for non-linear 
biases, we took the natural log of the CARE Past Frequency and WHOQol scores. For ease of interpretation, 
some variables were reversed so that for all PCA component loadings high scores indicate higher level of 
risk-taking/impulsivity (predictor components), poorer life outcomes (i.e., higher psychological distress, 
more risky behaviours, poorer quality of life; outcome components), and poorer cognitive control ability 
(cognitive control components).  

In a PCA model, each component is a linear combination of all variables and will fit as much of the 
variability as possible into the first component. The remaining variance is attributed to the subsequent 
component, and so on. The original variables are weighted by their contribution to explaining the variance 
in each linear dimension, making the interpretation of components difficult in some cases (Jolliffe, 2011). 
Consequently, we used oblique component rotation, which unlike traditional orthogonal (e.g., Varimax) 
rotation allows the rotated components to correlate. This results in a more realistic component structure 
(given that the variables entered into each PCA model inter-correlate across the hypothesised component 
structure; e.g., measures of psychological distress (e.g., DASS) inter-correlated with measures of quality of 
life (WHOQol), and self-report risk behaviours (CARE Past Frequency).  

The PCA was conducted using the ‘psych’ package (Revelle, 2018) in the R statistical modelling program (R 
Core Team, 2017). Z-scored data were entered into the fa.parallel function to determine the number of 
components to extract, using Horn’s (1965) parallel method of determining the number of factors. This 
function displays a standard scree plot of the eigenvalues, as well as a scree of a random data matrix of the 
same size, and components whose eigenvalues are larger than the random sample are retained. The 
analysis suggested five components for the predictor, three for the outcome, and two for the cognitive 
control variables, and these were extracted using the principal function with default settings. The 
‘GPArotation’ package (Bernaards & Jennrich, 2005) was used to conduct the oblique rotation (‘Oblimin’) 
and we examined the loadings of each rotated component to interpret the components.  

As some models contained a small subject:variable ratio (e.g., outcomes = 186:20), we obtained a number 
of descriptive statistics about each model to assist interpretation of the resulting model structure. The 
variable loading strength and the number of variables loading on each component were relatively high, 
indicating low error and good fit (Osborne & Costello, 2004). The communality of each variable which 
particularly in exploratory factor analysis is considered a measure the reliability of the variable (Gaston, 
2008), as well as the confidence intervals of loadings, and complexity is available in the online 
supplementary materials (https://osf.io/hs9me/). Table 2 shows the loadings of each variable on the 
rotated components for predictor, outcome, and neuropsychological variables.  

The five rotated Predictor components accounted for 64% of variance: (1) Risk Propensity contained strong 
contributions from measures that ask about the desire to engage in (SSS) and the perceived benefit of 
(CARE-2) risky behaviours; (2) Impulsivity contained strongest contribution from the BIS-11 subscales; (3) 
Delay Aversion included self-reported SSS Boredom Susceptibility and behavioural measures of delay 
aversion from the CGT; (4) Impulsive Decisions consisted of behavioural measures of risk adjustment from 
the CGT, as well as the Probability Correct from the IST; and (5) Work & Aggression contained strongest 
contributions from CARE-2 scales of perceived benefit of aggression and lax work practices. 

                                                            
1 The BRIEF scale was omitted from the cognitive control PCA because we had to use T-scores to compare scores from 
Child (<18 yrs) and Adult (>18 yrs) versions of the scale. Note that only 162 of the 168 participants completed the 
BRIEF.  

https://osf.io/hs9me/


   
 

The PCA model from the outcome variables produced a three rotated component structure that explained 
56% of variance: (1) Psychological Distress contained the DASS, K-10, and SBQ variables, and most of the 
DERS scales; (2) Quality of Life contained the WHOQoL scales and DERS Awareness scale; and (3) Risky 
Behaviours included the CARE Past-Frequency scales.  

Only two components were returned from the PCA model on the neuropsychological measures of cognitive 
control and accounted for 44% of the variance: (1) General-Executive Function (General-EF) contained the 
highest loadings from Trail-Making Task, Matrix Reasoning, Verbal Fluency, both SWM scores, as well as 
SOC; and (2) Working Memory Span contained strong loadings from the Digit Span measures, with weaker 
cross loading from SSP. 

Task-switching paradigm 

We used the cued-trials task switching paradigm with three tasks developed by Karayanidis et al. (2009).  

Stimuli and task parameters A grey circle (5o visual angle) was continuously displayed and divided into six 
sections, with adjacent sections mapped to one of three tasks (Figure 2A). The target was a pair of 
characters (e.g., grey A4) with three dimensions: one relevant to the task (e.g., if the target was in a letter 
section, ‘A’ would be mapped to a left response), one irrelevant dimension that was always incongruently 
mapped to the relevant task’s response (e.g., ‘4’ mapped to a right response) and a neutral dimension that 
was not mapped to any response (e.g., grey). A cue indicating the relevant task for this trial preceded the 
target by 1000 ms (i.e., a highlight over two adjacent regions of the circle, Figure 2B). In single-task blocks, 
the cue remained in the same position throughout the block, indicating that the same task was to be 
repeated (all-repeat trials). In mixed-task blocks, on repeat trials (25%; Figure 2Ci), the cue remained in the 
same position on consecutive trials. Repeat trials were identical to all-repeat trials but were interspersed 
with switch trials (25%; Figure 2Cii) on which the cue changed position and highlighted segments associated 
with one of the other two tasks. The remaining 50% of trials used partially informative cues and are not 
used here (see Karayanidis et al., 2009 for more task details). Targets were presented for 5000ms or until a 
response was emitted, and the next cue occurred 400 ms later. Incorrect responses resulted in an error 
feedback tone. Participants completed two training sessions (1320 practice trials) before undertaking 10 
mixed-task blocks (77 trials/block) and three single-task blocks (53 trials/block) while EEG was recorded.  

We derived two key task-switching measures. Switch cost is the difference in RT and error rate between 
switch and repeat trials, and reflects processes involved in task-set updating on switch trials (Karayanidis et 
al., 2009). Mixing cost is the difference in RT and error rate between repeat and all-repeat trials, and 
reflects increased working memory load on mixed-task compared to single-task blocks (see Los, 1996). 

EEG Recording and Processing EEG was continuously recorded relative to an amplifier reference voltage 
using an ActiveTwo Biosemi EEG system (2048 Hz, bandpass filter of DC-400 Hz) from 64 scalp electrodes, 
left and right mastoids, bilateral outer canthi, and supra/infraorbital sites. Common mode sense (CMS) and 
driven right leg (DRL) electrodes were positioned inferior to P1 and P2, respectively. EEG was processed in 
MATLAB through a pipeline utilising Fieldtrip (Oostenveld et al., 2011), CSD Toolbox (Kayser & Tenke, 2006) 
and in-house functions (A. Wong & P. Cooper). EEG was re-referenced off-line to electrode Cz and then 
down-sampled from 2048 Hz to 512 Hz (using the fieldtrip ft_preproc_resample function; zero-phase anti-
aliasing filter with a low-pass cut off frequency of 245 Hz). Data were high pass and notch filtered to 
remove line noise and low-frequency drift (high pass: 0.1 Hz, forward phase; 50 Hz notch: zero phase). 
Excessively noisy channels were identified with visual inspection and excluded (average 1.7 ± 4.1 channels 
per participant). Epochs were extracted from -1000 ms to 3500 ms with respect to cue onset. Blink and 
vertical eye-movement artefacts were identified and removed by a trained observer using Independent 
Components Analysis (ICA) with the fastICA algorithm (Hyvärinen & Oja, 2000; 1.38 ± .76 components). The 
remaining components were projected back into sensor (electrode) space. The data were low pass filtered 
(30 Hz, zero-phase) and trials with residual artefact larger than ±120 µV were deleted. On average, pre-
processing resulted in 110.92 ± 23.85 all-repeat, 131.51± 24.94 repeat, and 126.34 ± 26.62 switch trials per 
participant, with a minimum of 30 trials per trial type per participant. The surface Laplacian transformation 
was computed and a spherical spline function was applied across all channels, with a spline flexibility 
parameter, m = 4, for increased rigidness (Kayser & Tenke, 2015). An iterative process was used to solve a 
Legendre differential equation to obtain the surface Laplacian and surface potential matrices (Kayser & 



   
 

Tenke, 2006). As the EEG signal is transformed based on the second partial derivate of the signal (µV) over a 
spatial area (cm2 – i.e., the scalp), the measurement scale is µV/cm2 (Kayser & Tenke, 2006; 2015).  

ERP Measures Cue-locked ERP average waveforms were derived for each trial type (all-repeat, repeat, 
switch) from -200 ms to 1200 ms peri-cue, with a ±50 ms baseline. Mixing cost (repeat minus all-repeat) 
and switch cost (switch minus repeat) difference waveforms were extracted. The topography of significant 
mixing and switch effects across the cue-target interval were inspected in ≈10ms bins (five sample points at 
512Hz). Paired samples t-tests (α <.005, FDR corrected; Benjamini & Yekutieli, 2001) were conducted to 
determine ‘hotspots’ (i.e., electrode clusters and time windows) of significant posterior mixing and switch 
positivities typically obtained from this paradigm (Karayanidis et al., 2009). Table 3 shows early and late 
positivity hotspots identified for mixing and switch difference waveforms. For each hotspot, we measured 
peak amplitude over that time window at each electrode using an average measure over 4 sample points 
either side of the maximum (i.e., ≈18ms), as well as the latency of the peak amplitude. Peak amplitude was 
compared across electrodes within that hotspot, and the electrode with the largest peak amplitude was 
used to derive peak amplitude and latency for that hotspot. 

Multivariate Pattern Analysis (MVPA) was implemented in the Decision Decoding Toolbox (DDTBOX, Bode 
et al., 2018) to classify epochs of spatio-temporal EEG data measured on the two-dimensional surface of 
the scalp in a binary manner. This technique is based on a support vector machine (SVM; Cortes & Vapnik, 
1995) which uses an optimized linear kernel (LIBLINEAR, Fan et al., 2008) to obtain the hyperplane that 
maximises the margin of separation between two classes or conditions. 

We used MVPA to discriminate between ERPs for switch and repeat trials, corresponding to switch cost, 
and ERPs for repeat and all-repeat, corresponding to mixing cost. For each discrimination, the time of 
interest ranged 50-2050 ms post-cue (peri-cue baseline ± 50 ms), so as to include a post-target interval. A 
10-fold cross validation training process was repeated 10 times for each individual’s EEG trials on every 
spatiotemporal EEG feature, resulting in 100 classification rates per time bin per individual. A total of 320 
spatiotemporal EEG features (mean amplitude from non-overlapping 10 ms sliding windows at 64 channels) 
were used to train an SVM for each time bin (210 time bins per epoch). For each individual, a null 
classification rate was calculated using the above method, by randomly permuting condition labels. Across 
the sample, 6.762 million linear classifiers were trained across all discriminations used in this analysis.  

For each individual, we measured the maximum classification rate over the 50-2050ms interval and the 
latency at which this occurred. The signal was smoothed using a 10-point time domain moving average 
filter and peak analysis was used to identify the global maximum classification rate. Specifically, a linear 
search was used to identify all local maxima in the signal and identify the global maximum. A local 
maximum was identified as the global maximum, if its value exceeded that of the previous global maximum 
by a certain threshold. This threshold was defined separately for each discrimination task using an 
optimising process that favoured the first maximum classification, unless the subsequent one was 
substantially greater (i.e., avoid a minor increase in rate producing a disproportionate and potentially 
artificial increase in latency), hence minimising the number of subjects with a post-target maximum 
classification. The threshold was 3.64% for the switch vs. repeat discrimination, and 3.96% for the repeat vs 
all-repeat discrimination. 

Analyses Warmup trials (5 per block), trials with RT < 200 ms or > 3 SD above the individual’s mean RT, and 
error or post-error trials were removed from analyses (on average, 18.5 ± 8 % of trials) of RT, ERP and 
MVPA measures. Behavioural (median RT, error rate) and EEG-based (ERPs, MVPA) measures were 
analysed using GLM in SPSS v21 with Trial Type (all-repeat, repeat, switch) as a repeated measures factor, 
and Age Group and Sex as between-group factors (see below). Two planned comparisons were used to 
assess switch cost and mixing cost, with family-wise error Bonferroni correction (α < .05/2) and 
Greenhouse-Geisser correction for the violations of the assumption of sphericity.  

Mediation Analyses  

Mediation analysis was used to assess whether the relationship between predictor (X) and outcome (Y) 
variables was mediated by cognitive control variables (M). If the total effect of X on Y was reduced or 
removed after including M, this was taken as evidence that the relationship between X and Y was partially 



   
 

or fully mediated by M, respectively (see Baron & Kenny 1986; MacKinnon 2008). To compare the strength 
of mediation, we standardised all M variables. We report the indirect effect (X  M  Y) as the main index 
of mediation. 

The mediation analyses were conducted in R (R Core Team, 2017) using the ‘mediation’ package (Tingley, 
Yamamoto, Hirose, Keele & Imai, 2014) with default arguments of the mediate function, which uses 
bootstrapping to determine significance (Imai, Keele & Tingley, 2010). Data were resampled with 
replacement with 5000 bootstraps and the distribution of indirect, direct, and total effects were returned. 
We report the indirect effect estimates, their associated confidence intervals, and p-values in-text, with 
more detailed summaries of the models in the online supplementary materials (see https://osf.io/hs9me/). 
We also present Bayes Factors (BF) to describe the likelihood of the data in the mediation or the null 
hypothesis (i.e., that there is no mediation effect). Using the R package ‘BayesMed’ (Nuijten, Wetzels, 
Matzke, Dolan, & Wagenmakers, 2015), we used the default settings of the jzs_med function to perform 
mediation largely as described above. This function uses a Jeffreys-Zellner-Siow prior (Liang, Paulo, Molina, 
Clyde & Berger, 2008) and takes 10,000 samples, with 500 ‘burn-in’ samples using JAGS software (Hornik, 
Leisch & Zeileis, 2003). We present the resulting BF10 which describes the evidence in favour of the 
mediation effect, and the inverse (BF01) for a null mediation. As per Kass and Raftery (1995), Bayes factor 
values are referred to as positive (> 3), strong (>20), and very strong (>150) evidence for mediation (B10) or 
for the null (B01). Full descriptive output for both types of models can be found online 
(https://osf.io/hs9me/). 

Significant mediation models were rerun with age as a possible moderator, using Hayes (2017) model 58, 
which includes an interaction with age on both predictor-mediator, and mediator-outcome paths. To test 
for significant moderated mediation, we compared conditional indirect effects for different values of age, 
selected to be the mean of each age group: Adolescent (16.8 yrs), Young Adult (20.8 yrs), and Adult (28.4 
yrs). If one group had a significant mediation effect and at least one other did not, we had some evidence 
for moderated mediation, i.e., mediation is dependent upon age. We tested whether the moderated 
mediation was significant using the test.modmed function in the ‘mediation’ package. This tests the 
conditional indirect effects at one value of age against another and returns the beta value difference, 95% 
confidence interval, and p value. As Bayesian analysis for moderation has not yet been implemented in the 
‘BayesMed’ package, we could not calculate Bayes factors. 

 

RESULTS 

Age and Sex Effects on Predictor, Outcome and Cognitive Control PCA Components 

Means and standard deviations are shown for males and females in each age group in Table 4. Predictor 
components showed a number of significant age and sex effects (Table 5A). The Adolescent group scored 
higher on the Delay Aversion and Impulsive Decisions PCA components, compared to both the Young Adults 
and Adult groups, indicating a tendency to respond faster and more impulsively, even though they did not 
report higher impulsivity or benefits of risk-taking (Impulsivity, Risk Propensity components). Yet, both 
Adolescent and Young Adult groups reported greater perceived benefits of antisocial behaviours compared 
to the Adult group (Work & Aggression). Males reported higher benefits of risky behaviours (Risk 
Propensity), and benefits of antisocial behaviour (Work and Aggression), but, their responding showed less 
impulsive choice (Impulsive Decisions) than females.  

Outcome and Cognitive Control components showed no effects of Sex (Table 5B & C). An Age effect was 
significant for both Psychological Distress and General-EF components, indicating that Adolescents reported 
poorer psychological wellbeing and performed more poorly on cognitive control tasks than both Young 
Adults and Adults. These findings are consistent with the significant Age effect on the BRIEF Behavioural 
Regulation and Metacognition Indices (BRI: F(2,156) = 27.72, p < .0001, pη2 = .26; MI: F(2,156) = 14.03, p < .0001, 
pη2 = .15), where Adolescents reported lower cognitive control than both Adult and Young Adult groups 
(BRI: p< .0001, p = .001; MI: both p<.0001). 

Task-switching  

https://osf.io/hs9me/
https://osf.io/hs9me/


   
 

Behavioural Data Both median RT and percent errors (Figure 3) showed significant main effects of Trial 
Type (see Table 6).  There was a significant mixing cost for RT (69ms) but not error rate, whereas switch 
cost was significant for both RT (156 ms) and error rate (2.67%).  

There was a significant Age effect on both RT and error rate, with the Adolescent group responding more 
slowly than Young Adults and less accurately than both Young Adults and Adults. While the Trial Type x Age 
interaction was significant for both RT and error rate, only RT switch cost was significantly larger for 
Adolescents compared to Adults.  

ERPs Figure 4A shows ERP waveforms over the cue-target interval (CTI) for each trial type at three posterior 
midline sites where differences were most pronounced. The scalp distribution of early and later sections of 
the mixing- and switch-positivity are shown in Figure 4B. Outcomes of statistical analyses are shown in 
Table 6. 

Mixing-positivity. All-repeat and repeat trials differentiated after 250 ms with a ‘mixing-positivity’ for 
repeat trials emerging across the N2/P3 period, and extending posteriorly to the end of the CTI, with a 
reverse late effect evident more anteriorly (Figure 4). The amplitude of both early (mean latency: 373 ± 55 
ms; mean amplitude: 23 ± 11 μV/cm2) and the late (652 ± 134 ms; 28 ± 15 μV/cm2) sections of the mixing-
positivity varied significantly across Age groups, with larger early and late mixing positivity in Adolescents 
and Young Adults compared to Adults. Adolescents also had a larger early mixing positivity compared to 
Young Adults. 

Switch-positivity. Differentiation between repeat and switch trials emerged first over the posterior P2, and 
then again before N2 onset, resolving by the end of the P3 (Figure 4). The early section of the switch-
positivity (283 ± 24 ms; 27 ± 12 μV/cm2) was laterally and parietally distributed (Figure 4B), and did not vary 
with Age. The late switch-positivity (433 ± 62 ms; 29 ± 13 μV/cm2) was more clearly defined centroparietally 
and was larger for Adolescents than Young Adults and Adults.  

MVPA Figures 5 shows the outcomes from MVPA analyses for mixing cost and switch cost2. Peak 
differentiation between repeat and all-repeat trials and between switch and repeat trials occurred before 
target onset in 96% and 95% of participants, respectively.  

The average classification rate for mixing cost peaked around 200 ms at just over 55% correct and differed 
significantly from chance between 100 ms and 800 ms post-cue (Figure 5Ai). Maximum classification rate 
varied from 50% to 75%, with a mean of 57% around 300 ms post-cue (Figure 5Bii & iii). For switch cost 
(Figure 5B), the average classification rate peaked around 250 ms at just over 55% correct and differed 
significantly from chance between 150 ms and 700 ms post-cue (Figure 5Bi). The average maximum 
classification rate for switch cost was also 57% at around 300 ms (Figure 5Bii & iii). There were no effects of 
Age group or sex on maximum classification rate (Table 6). 

Associations between predictors, outcomes, and cognitive control mediators  

Pearson correlations (uncorrected) between predictor, outcome, and cognitive control measures were used 
to identify variables to enter into the mediation model (Table 7). Correlations between all measures are 
shown in online at https://osf.io/hs9me/.  
Predictor and outcome relationships (X Y). The two predictor components that had high loadings from 
self-report measures correlated moderately to strongly with outcome components, which all relied on self-
report. Not surprisingly, given that they have high loadings from different sections of the same 

                                                            
2 Based on individually estimated null classification rates (using p-value <.05, uncorrected), the peak classification 
score of some participants did not differ significantly from chance. Specifically, 10% (N=17) did not significantly 
discriminate switch and repeat trials and 20% (N=36) did not significantly discriminate all-repeat and repeat trials (47 
participants in total). To determine whether ‘discriminators’ (N = 121) and ‘non-discriminators’ (N = 47) differed in any 
way that may impact further analyses, we compared the two groups using independent samples t-tests on all other 
variables using FDR (alpha <.05) corrected t-tests. The groups did not differ on any MVPA, behavioural or ERP task-
switching measures, nor did they differ by age, sex, or any predictor, outcome and cognitive control variable (p = .168 
–.979). Excluding the 47 ‘non-discriminators’ did not affect the MVPA analyses (p = .173 –.793). Consequently, all 
further analyses were conducted on the entire sample of 168 participants. 

https://osf.io/hs9me/


   
 

questionnaire (CARE), the Risk Propensity component strongly correlated with the Risky Behaviours 
component. The Impulsivity component positively correlated with all three outcomes components. Note 
that the two predictor components that had high loadings from behavioural scores did not correlate with 
any of the outcome components.  

Predictors and cognitive control relationships (X M). The Impulsivity component (which consisted 
primarily of the BIS-11) correlated most strongly with the BRIEF Behavioural Regulation and Metacognition 
indices, and more weakly with the General-EF and the WM Span components, as well as RT switch cost 
from the task-switching paradigm. The Impulsive Decisions component (which represents preference for a 
fast choices without regard for strength of evidence from the IST) also correlated moderately with General-
EF, and more weakly with the late switch-positivity amplitude. The Delay Aversion component (a 
behavioural measure which also taps into impulsive choices or a preference for fast decisions that do not 
optimise rewards from the CGT) correlated strongly with the General-EF component, RT switch cost, early 
and late switch-positivity amplitude, error mixing cost, as well as Behavioural Regulation and 
Metacognition BRIEF indices. Finally, the Work & Aggression component correlated weakly with both RT 
switch cost and the BRIEF Behavioural Regulation index. Overall, this pattern of findings indicates that 
participants who reported being impulsive and who showed evidence of impulsive choices and aversion to 
slow and considered decision-making performed more poorly on tasks that require cognitive control, 
showed more effortful preparation to set-shift, and reported poorer levels of cognitive control. 

Cognitive control and outcome relationships (M Y). There were no significant correlations between task 
switching measures of cognitive control and outcome components. The General-EF component was only 
weakly correlated with the Psychological Distress component, and unlikely to survive correction for 
multiple comparisons. In contrast, BRIEF indices correlated with all three outcome components, and most 
strongly with Psychological Distress. So, self-report measures of cognitive control, but not behavioural 
measures of cognitive control, correlated with self-report measures of psychological wellbeing, 
engagement in risky behaviours, and quality of life.  

Mediation and Moderation analyses 

Mediation models were run only for significant paths between predictor and outcome components (see 
Table 7). For consistency, all cognitive control variables were entered as mediators, irrespective of whether 
they significantly correlated with predictor and/or outcome components. Cognitive control mediators 
included the two cognitive control components extracted from PCA (General-EF, WM-Span), the Behaviour 
Regulation and Metacognition indices of the BRIEF, and both mixing cost and switch cost measures from 
the task-switching paradigm (RT, error rate, early-positivity, late-positivity, MVPA max classification rate). 
The full table of mediation results are presented in the supplementary materials (https://osf.io/hs9me/). 
Here we discuss the significant models and describe the Bayesian evidence for the null hypothesis (i.e., no 
mediation effect) where applicable. 

BRIEF Indices as mediators. As the BRIEF indices showed the strongest correlations with both predictor and 
outcome components, we first examined them as mediators.  

Figure 6A shows that the relationship between Impulsivity and Psychological Distress (β =.527) was 
significantly mediated by both Metacognition (top) and Behaviour Regulation (bottom) indices, with strong 
Bayes Factors supporting these mediation effect. Specifically, the Impulsivity  Psychological Distress 
relationship was reduced by β = .22 ([.095, .353], pFDR <.001, BF10 = 106) when controlling for Metacognition 
and by β = .326 ([.227, .439], pFDR <.001, BF10 = 2.13 x 1011) when controlling for Behavioural Regulation. 
Although both mediation (indirect) effects were highly significant, in both cases the remaining Impulsivity 
 Psychological Distress relationship (direct effect) remained significant, indicating that self-report 
measures of cognitive control only partially mediate this relationship.  

To examine whether age moderated the relationships in the above mediation models, we compared the 
mediation effect of each BRIEF Index at the mean age of each Age Group: Adolescents (16.8 yrs), Young 
Adults (20.8 yrs), and Adults (28.4 yrs). The mediation (indirect) effect of both Metacognition and Behaviour 
Regulation Indices on the Psychological Distress  Impulsivity relationship was significant for each group, 
indicating that age does not significantly moderate the above mediation effect (For MI and BRI, 

https://osf.io/hs9me/


   
 

respectively: Adolescents: 𝛽𝛽 = .207 [.097, .32], p = <.0001, and 𝛽𝛽 = .315 [.216, .42], p = <.0001; Young 
Adults: 𝛽𝛽 = .205 [.096, .32], p = .0004, and 𝛽𝛽 = .316 [.22, .42], p = <.0001; Adults: 𝛽𝛽 = .206 [.09, .33], p = 
.0004, and 𝛽𝛽 = .314 [.216, .42], p = <.0001). 

The relationship between Impulsivity  Quality of Life (𝛽𝛽 = .414) was significantly reduced by 𝛽𝛽 = .118 
([.024, .208], pFDR = .021, BF10 = 1.23), when Behavioural Regulation index was included as a mediator 
(Figure 6B). Although statistically significant, this mediation effect was weak and not supported by the 
Bayes factor. Age did not significantly moderate this relationship (Adolescents (𝛽𝛽 = .117 [.021, .22], p = 
.014), Young Adults (𝛽𝛽 = .118 [.021, .22], p = .014), Adults (𝛽𝛽 = .117 [.018, .22], p = .018).  

The Behavioural Regulation index also significantly mediated the relationship between Work & Aggression 
and Psychological Distress, 𝛽𝛽 = .156 ([.042, .259], pFDR = .041, BF10 = 4.98. Although the mediation effect was 
weak and only weakly support by Bayesian analysis, the direct effect was no longer significant (Figure 6C) 
indicating a full mediation effect. Again, age did not moderate this mediation effect (Adolescents, 𝛽𝛽 = .143 
[.041, .25], p = .008; Young Adults, 𝛽𝛽 = .143 [.04, .25], p = .007; Adults, 𝛽𝛽 = .14 [.038, .25], p = .009). 

All remaining BRIEF mediation models had BF01 < 16, indicating weak evidence of mediation.  

Other cognitive control variables as mediators. No other cognitive control variable significantly mediated 
any relationship between predictor and outcome components. The exact evidence for the null in each 
model can be found at https://osf.io/hs9me/. There was between 20 and 50 times more evidence for the 
null in the vast majority of mediation models (57/70), with 15 of those models showing at least 150 times 
more evidence for the null.  

 

DISCUSSION 

This study examined whether variability in cognitive control ability mediates the relationship between level 
of impulsivity/reward processes and maladaptive outcomes in adolescence and young adulthood. We first 
discuss age and sex effects, and the relationships between impulsivity/reward-related behaviours, outcome 
components tapping into risky behaviours and wellbeing, and cognitive control ability. We then discuss the 
outcomes of the mediation analyses in the context of risk-taking models. Finally, we consider the 
implications of the different findings arising from self-report and behavioural measures purportedly tapping 
into the same constructs.  

Effect of Age and Sex on Predictors, Outcomes, and Cognitive Control  

Adolescents performed more poorly than adults across a number of levels, whereas there were few 
differences between young adults and adults3. Specifically, adolescents showed greater difficulty regulating 
behaviour to optimise outcomes, and reported higher benefits of antisocial behaviours specifically related 
to work conduct and aggression (e.g., getting into a fight, being truant from school/work). Although they 
did not differ significantly from adults in self-reported level of quality of life or engagement in risky and 
antisocial behaviours (eg., alcohol, drugs), adolescents reported higher levels of psychological distress and 
poorer behaviour regulation and metacognition. This could suggest an awareness that they are not yet 
proficient in controlling their behaviour and using experience to guide future actions, or result from the fact 
that these measures share common variance (see Do self-report and task-based measures tap into the 
same underlying constructs?). Adolescents also performed more poorly than adults on behavioural and 
electrophysiological measures of cognitive control, showing poorer reasoning, cognitive flexibility, planning, 
and more effortful and less efficient proactive control processes. Effects of sex were few and not entirely 
consistent, (e.g., men reported higher benefits from risky behaviours, but showed better ability to control 
impulsive choices to adjust for risk than females), and did not interact with age.  

This pattern of findings is consistent with adolescence as a period of continuing development of cognitive 
control processes, with difficulties regulating behaviour, especially in reward-related and/or emotional 
contexts (Casey, Jones, Hare, 2008; Stanford, Greve, Boudreaux, Mathias & Brumbelow, 1996; Steinberg et 

                                                            
3 Given the sparse and weak differences between young adult and adult groups (higher Work & Aggression 
component and larger mixing positivity amplitude), they require replication before further interpretation.   

https://osf.io/hs9me/


   
 

al., 2008). The continued development of cognitive control processes from adolescence into adulthood is 
well documented (e.g. Luna, Garver, Urban, Lazar & Sweeney, 2004; Ridderinkhof, Band & Logan, 1999; 
Sander, Lindenberger & Werkle-Bergner, 2012). Adolescents (and children) appear to require greater 
activation of cognitive resources and associated brain networks to perform a demanding cognitive task at 
the same or lower level than adults (e.g., Karayanidis, Jamadar & Sanday, 2013; for reviews see Blakemore 
& Choudhury, 2006; Coch & Gullick, 2012) – a type of developmental equivalent of the compensation-
related utilisation of neural circuits hypothesis (CRUNCH; Reuter-Lorenz & Cappell, 2008). This may result in 
inefficient implementation of cognitive control processes, especially when the emotional stakes are high 
(Diamond, 2013). Importantly, in relation to this study, the observed age effects are consistent with risk-
taking models’ profile of adolescents showing continuing maturation of cognitive control and reward-
related processes, as well as higher levels of psychological distress.  

Relationships between Predictors, Outcomes and Cognitive Control 

Higher levels of (self-reported) impulsivity were moderately to strongly correlated with higher 
psychological distress, greater engagement in risky behaviours and poorer quality of life (outcome PCA 
components), as well as with poorer self-reported cognitive control, but only weakly with task-based 
(behavioural and electrophysiological) measures of cognitive control. In contrast, task-based measures of 
impulsive decision-making and difficulty optimising reward were not associated with any outcomes 
components, but did correlate with both task-based and self-report measures of cognitive control. These 
findings are consistent with previous evidence that self-report and behavioural measures of impulsivity are 
not robustly associated, and that only the former correlate with self-reported level of wellbeing and risk-
taking (Skippen et al., 2019; for review see Cyders & Coskunpinar, 2011; Sharma, Markon & Clark, 2014; 
Stahl et al., 2014; for further discussion, see Do self-report and task-based measures tap into the same 
underlying constructs?).  

A similar pattern of relationships was found for the self-report outcome components; they correlated 
moderately strongly with the self-report BRIEF indices, but not with task-based measures of cognitive 
control. Thus, contrary to the predictions of risk-taking models, the association between cognitive control 
measures and either predictor or outcome components was weak, except amongst measures derived from 
the same level of analysis (i.e., exclusively self-report or exclusively behavioural). 

In contrast to self-reported impulsivity, neither self-report measures of reward-seeking behaviours nor 
task-based measures of controlling impulsive choices to optimise reward significantly correlated with any 
outcome component4. This is unlikely to be due to a measurement error (e.g., low variance), as many of 
these measures did show significant effects of age and/or sex, and controlling for age did not change the 
pattern of correlations. This finding is surprising, as contrary to the basic tenet of risk-taking models, one’s 
ability to control impulsive choices to optimise reward was not related to their current level of risk-taking 
or maladaptive outcomes. As current attitudes and behaviour are likely to have a stronger impact on future 
outcomes (Bø, Billieux, Gjerde, Eilertsen & Landrø, 2017; Moffitt et al 2011), it is possible that these 
relationships will emerge more strongly in longitudinal perspectives. 

Does cognitive control ability mediate the relationship between impulsivity/perceived risk benefit and 
maladaptive outcomes? 

Mediation analyses showed that, consistent with our prediction, the effect of self-reported impulsivity on 
level of psychological distress was partially mediated by level of behaviour regulation and metacognitive 
ability derived from the BRIEF. A similar but weaker partial mediation effect was found for behaviour 
regulation on the effect of impulsivity, as well as the perceived benefits of antisocial work behaviour and 
aggression, on quality of life. Note that, again, all variables in this significant mediation model were derived 
(almost) exclusively from self-report instruments. In contrast, behavioural (or EEG) cognitive control 

                                                            
4 The only exception was the significant correlation between perceived risk benefit (predictor) and level of 
engagement in risky behaviours (outcome) components which have strong loadings from different forms of the same 
questionnaire (self-report CARE). This relationship was not mediated by self-report or task-based measures of 
cognitive control or vary with age. It is likely to be partially due to smearing of constructs across the two forms of the 
questionnaire (how much benefit from vs. how often do you engage in) and is not discussed further. 



   
 

measures derived from neuropsychological and experimental tasks did not mediate the significant 
relationships between self-reported impulsivity and any outcome component.  

The correlations between impulsivity/reward-related predictor components, outcome components, and 
cognitive control variables remained for the most part significant when controlling for age (Table 7). 
Therefore, although adolescents show continuing development of processes related to reward-seeking, 
impulsive choices, cognitive control and psychological distress, the inter-correlations between these 
variables remain largely stable across the adolescent to adult age range. Moreover, age did not significantly 
moderate any of the above mediation effects: self-reported level of cognitive control mediated the 
relationship between impulsivity and both psychological distress and quality of life equally across the 
adolescent to adult age range. This finding is inconsistent with the strong prediction of dual systems models 
that higher risk-taking and greater incidence of maladaptive outcomes in adolescents are due to differences 
in relative rate of maturation of reward-related and cognitive control-related networks. It questions the key 
premise that adolescents engage in more risks because of protracted development of neural networks that 
support behaviour regulation vs. reward mechanisms (see also Romer et al., 2017). Rather, the fact that 
this mediation effect was present independently of age suggests that variability in experiences gained 
through exploration, rather than age per se, can better account for individual variability in behaviour 
regulation and risk-taking behaviours across the lifespan (e.g., see Romer et al. 2017). However, it is 
important to note that the absence of significant moderating effects of age in our data may have been 
influenced by low statistical power, as a result of dividing our sample into three age groups. 

Do self-report and task-based measures tap into the same underlying constructs?  

Measures derived from self-evaluation more strongly predicted risk-taking and maladaptive outcomes than 
performance measures. Specifically, the Impulsivity component, based largely on the BIS-11, and the BRIEF 
indices correlated strongly with Psychological Distress, but more weakly with the other outcome 
components. Moreover, the BRIEF indices were the only significant mediators between Impulsivity and 
outcome components. At face value, these findings suggest that an individual’s evaluation of their 
metacognitive ability and level of self-regulation is a more sensitive predictor than measures derived from 
their performance. However, there are a number of other, not mutually exclusive, alternative explanations.  

Self-report and task-based (behavioural and ERP) measures may tap into different aspects of behaviour 
(McAuley, Chen, Goos, Schachar & Crosbie, 2010). Across the board, self-report measures inter-correlated, 
irrespective of their designated status (i.e., predictors, mediators or outcomes), and task-based measures 
also inter-correlated, albeit more weakly. Other studies have also reported that self-report and behavioural 
measures of cognitive control are not strongly correlated (eg., stop-signal and Stroop tasks: Allom, Panetta, 
Mullan & Hagger, 2016; neuropsychological measures: Burgess et al., 1998; Rabin et al., 2006). This could 
arise, at least partly, because self-report and task-based measures differ in the period of assessment: the 
former often require a retrospective assessment over a period ranging from weeks to months, whereas the 
latter assess average ability at the time of testing. While both may be influenced by situational variability 
(e.g., fatigue, boredom), self-report measures are likely to represent more stable, trait-like characteristics 
and task-based measures to be influenced more strongly by state variability (Sharma et al., 2014). 
Additionally, self-report measures typically request a broad evaluation covering a range of abilities as they 
impact everyday life (e.g., ability to plan ahead, evaluate cost-benefits before engaging in risky behaviour), 
whereas task-based measures target the implementation of distinct cognitive abilities in a ‘sanitised’ lab 
environment (e.g., planning your strategy before initiating a response). Therefore, as suggested by McAuley 
et al. (2010), task-based assessments are sensitive to level of specific cognitive skills, whereas self-report 
assessments may evaluate the application of those skills and abilities in everyday life. The fact that 
correlations between different task-based measures were overall weak is consistent with the idea that task-
based measures tend to assess distinct or minimally overlapping cognitive processes.  

In addition, self-report measures are likely to tap into common sources of variance. An individual is likely to 
bring the same biases to the way they evaluate themselves in different self-report instruments (McAuley et 
al., 2010). Most obviously, current mood is very likely to impact one’s perceived level of cognitive control 
efficiency, psychological well-being and risk propensity. Likewise, one’s perception of how well they 
regulate their behaviour at the current time may influence how they evaluate their level of impulsivity and 



   
 

engagement in risk-taking behaviours (e.g., one may evaluate having 5 drinks as risky or reasonable, 
depending on how much they feel in control over their decision to have them in that specific context). 
Moreover, self-report questionnaires tap into constructs that are not completely independent, such as 
impulsivity, behaviour regulation, emotion regulation etc. The BRIEF indices were most strongly correlated 
with the Impulsivity predictor and Psychological Distress outcome components (r = .54-.69), which received 
strong loadings from the BIS-11 and the DASS, respectively. These questionnaires have a number of very 
similar items. For instance, items used to measure behaviour regulation in the BRIEF are largely identical to 
DASS items used to assess mood (e.g., I tend to over-react to situations vs I overreact to small 
situations/problems, respectively), and the BRIEF scales correlate moderately to strongly with measures of 
anxiety and depression (Roth, Isquith & Gioia, 2005). There are also many similar items in the BRIEF and the 
BIS-11 (e.g., I don’t plan ahead for tasks vs I plan tasks carefully, respectively) or even identical ones (e.g., I 
say things without thinking, is in both instruments).  

Finally, the common variance between self-report measures of cognitive control and impulsivity could be 
partly related multidimensional structure of impulsivity (Dawe & Loxton, 2004; Gullo & Dawe, 2008). 
Specifically, the disinhibition component is more likely (than the reward sensitivity component) to be 
related to the cognitive control construct of response inhibition, and hence perceived ability to regulate 
one’s behaviour, consistent with the conceptualisation of impulsivity by some models of risk-taking (e.g., 
Steinberg, Casey). However, in this case, we would have expected the behavioural measures of impulsivity 
derived from the CANTAB Gambling Task and Information Sampling Task to be more strongly associated 
with the self-regulation index of the BRIEF and behavioural/electrophysiological measures of interference 
control from the task-switching paradigm, which was not the case. We conclude that the multidimensional 
structure of impulsivity can’t account for the difference in relationships between self-report and 
behavioural measures. In addition, these data show that, while some aspects of impulsivity may map 
directly onto difficulty in response inhibition, impulsivity is not fully encapsulated within or identifiable as a 
measure of cognitive control.  

These findings caution against using single level of analysis (self-report or behavioural) or single measures 
at each level of analyses when seeking to quantify individual variability in cognitive control ability, its 
relationship to impulsivity and reward-related processes, and its impact on adaptive/maladaptive 
behaviours. They also emphasise the need for better defined key constructs, so as to reduce common 
variance across self-report measures of different constructs and improve mapping between self-report and 
behavioural measures of the same construct.  

Conclusion 

Overall, the pattern of age effects in predictor, outcome, and cognitive control variables are broadly 
consistent with continuing maturation across adolescence into young adulthood, and plateau thereafter. 
Age effects were stronger on measures that tapped into cognitive control processes and controlled 
decision-making to optimise outcomes, consistent with adolescent risk-taking models that argue for 
delayed maturation of cognitive control as compared to reward drive processes. Also, consistent with these 
models, self-reported level of cognitive control mediated the relationship between self-reported levels of 
impulsivity and psychological distress. However, firstly, this effect that was not moderated by age, 
suggesting that individual variability in cognitive control is more crucial to the relationship between risk-
taking/impulsivity and outcomes than age itself. Secondly, the mediation effect was significant with self-
report but not behavioural or EEG-based measures of cognitive control. Finally, unlike impulsivity, self-
reported level of perceived reward-seeking (benefit of risky behaviours, sensation-seeking) did not 
correlate with psychological distress or quality of life.  
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Figure legends 

 

Figure 1. Participant attrition flowchart. Note: BRIEF-SR = Behavioural Rating Inventory of Executive 
Function Self-Report 

Figure 2. Cued-trials task switching paradigm. (A) Display structure indicating mapping of adjacent 
segments to letter, digit, and colour classification and example of stimulus-response mapping. (B) 
Single trial example. A cue is presented 400 ms after the response to the previous trial and highlights 
two adjacent segments (corresponding here to the letter task), indicating that the next target will 
appear in one of these segments. After 1000 ms, a target appears in one of the highlighted segments 
and participants are required to respond to the target. (C) The following trial (N-1) could be a i) repeat 
trial. i.e., the same two segments are highlighted and the same task is performed, or ii) switch trial, i.e., 
the cue highlights segments associated with one of the other two tasks and validly indicates which task 
to perform on the target. 

Figure 3. Behavioural task-switching measures. Left: Median RT (ms). Right: Error rate (percentage) for 
each trial type and mixing/switch costs from the task-switching paradigm. Plots display the distribution of 
each data series with a superimposed box and whisker plot. Notch centre is the mean score, box edges = 1st 
and 3rd quartile, whisker ends = ± 1.5 interquartile range. Numbers represent group averages. 

Figure 4. Task-switching ERPs. (A) Cue-locked ERP average waveforms (with standard error) at three 
midline sites for each trial type. (B) Scalp distribution of cue-locked switch positivity and mixing positivity. 
Black stars on the headplots represent the electrodes included in the hotspot. 

Figure 5. MVPA outcomes for switch cost (switch vs. repeat trials; A) mixing cost (repeat vs. all-repeat trials; 
B). Mean classification rate waveform are shown for switch cost (Ai) and mixing cost (Bi) spanning from 
50ms pre-cue to 1000ms post-target. Aii (switch cost) and Bii (mixing cost) show the distribution of the 
maximum classification rate, with the latency of the maximum classification shown in Aiii (switch cost) and 
Biii (mixing cost). 

Figure 6. Graphical summary of the significant mediation models. Description of the Total Effect (TE), 
Indirect Effect (IE) and Direct Effect (DE) of (A) self-report BRIEF Metacognition (Ai) and Behavioural 
Regulation (Aii) indices on the relationship between Impulsivity and Psychological Distress components, (B) 
self-report BRIEF Behavioural Regulation indices on the relationship between Impulsivity and Quality of Life 
components and (C) self-report BRIEF Behavioural Regulation indices on the relationship between Work & 
Aggression and Psychological Distress components. The standardized Beta value for each path/effect is 
presented, with associated p-value and Bayes factor (BF10). 
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